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Abstract - For many oceanic studies, it is changes horizontally with constituents in the water
required to know the distribution of visible solar [1, 5], but also changes with depth for any water [6,
radiation (EPAR) in the upper water column. 7].
One way to reach this is by remote sensing. This To represent the steeper than exponential
includes two components: First, EPAR at surface reduction of EpAR with depth, multiple exponential
is calculated based on atmosphere properties terms [6, 7] were usually adopted, with an
along with the position of the Sun. Second, the attenuation coefficient (or attenuation depth)
vertical attenuation of EPAR (KPAR) is derived assigned for each term. These attenuation
from products of ocean-color remote sensing. coefficients are kept vertically constant, but
Currently, KPAR is estimated based on horizontally vary with Jerlov [5] water types.
chlorophyll concentration ([C]) from ocean Recently, simple and explicit models have been
color. This kind of approach works well for developed to incorporate satellite-derived
waters where all optical properties can be chlorophyll concentrations ([C]) into the
adequately described by values of [C], but will description of the attenuation of EpAR. When [C]
result in large uncertainties for coastal waters values are provided via satellite observations of
where [C] alone cannot accurately describe the ocean color [8, 9], the partition factors and
optical properties. In this paper, we present an attenuation coefficients of the terms could be
innovative model that describes KPAR as a calculated [4].
function of water's inherent optical properties Such kind of approach works for Case-i
(lOP). waters - where all optical properties are

determined by [C] alone (with solar zenith angle
I. INTRODUCTION explicitly or implicitly included) [10, 11]. For non-

Case-i waters, uncertainties arise due to that it is
Solar radiation in the visible domain (EPAR( 3 5 0 not a constant relationship between [C] and optical

- 700 nm), measured by downwelling irradiance in properties. To avoid such limitations associated
this text) encompasses the wavelengths shorter with [C]-based models, another approach is to
than 700 nm. The pioneer study of Zaneveld et al. describe the vertical transmittance of EpAR using
[1] and subsequent studies [2-4] have demonstrated water's optical properties [12, 13]. Following this
that the vertical penetration of EpA plays an strategy, and because that water's absorption (a)
important role in heat transfer of the upper water and backscattering coefficients (bb) can be
column. EpAR at surface can now be adequately adequately derived from ocean-color remote
estimated from satellite measurements of sensing [14-16], we developed a model to describe
atmosphere properties. It requires information of the vertical transmittance of EpAR using values of a
water's optical properties to determine the vertical nha h.

attenuation of EpAR (KpAR) with depth. Historical
measurements have shown that KpAR not only 20060623000
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II. Hydrolight SIMULATED KPAR(Z) coefficients. The dotted lines in Figure 1 show
Eq.2 modeled KpAR(z) for those examples. Figure 2

As in earlier studies [17, 18], we used presents the result of HydroLight KpAR(z) versus
HydroLight [19] to get the necessary data sets: Eq.2-modeled KpAR(z), with the Sun at 300 from
KPAR(Z), and a and bb. Unlike the simulations in zenith. Apparently the modeled KPAR(Z) matches
Ohlmann and Siegel [18] where water's lOPs were the Hydrolight KpAR(z) very well (the average error
determined by [C] only, lOPs in our simulations is 2.2%, with maximum error of is 6.4%). Such
were simulated with varying [C] and independently results clearly demonstrate that Eq.2 is adequate to
varying CDOM and suspended sediments, as describe the vertical change of KpAR(z).
described in Lee et al. [14] and IOCCG-OCAG
[20]. Later, KpAR(z) is modeled as a function of a,
bb and z. Numerous descriptions can be found .M.0.10 .', [0." . .02 0.

regarding simulations by HydroLight. [19, 21-23]. -- ;-- -.

The following summarizes the input settings 30

carried out in this study. l
The downwelling irradiance at sea surface

from the Sun and sky is simulated by the spectral
model of Gregg and Carder [24]. a and bb values
at 440 nm varied from 0.02 to 1.9 m"1 and 0.002 to ..... o120oo5,
0. 115 m"-, respectively, and kept vertically constant. 0.137;000810.1 1 epciey an etvrialeosat 5,05"7;0.0001

The wavelengths are in a range of 350 - 700 nm
with a 10-nm spectral resolution. Five depths
(excluding 0 m) were selected for each HydroLight Figure 1. Examples of KpAR(z) for different water
run, with depths spread within and beyond the properties. The numbers in the box are values
euphotic zone [25]. No bottom reflectance and of a(490) (left) and bb(49 0) (right). Symbol
inelastic scatterings (such as Raman scattering) are represents KpAR(z) from HydroLight
included in this study. simulations, while dotted lines are models

from Eq.2.
III. MODELING OF KpAR(z)

With EpAR(z) simulated by HydroLight
KPAR(Z) is calculated I AR ...

KPAR(Z) =lIn .EPR(O-)- (1) 1,

z (EpA(z)R )

Figure 1 presents a few examples of KpAR(z).
Clearly, KPAR(Z) differs significantly for varying ..
water properties. Also, consistent with earlier
measurements, subsurface KpAR(z) changes a lot
even for vertically homogeneous waters. This . 00 . 0.. .

0.0 0 0A6 0.9 1.2 1 .S 1.8

change is due to that water molecules absorb Hydm•oight1K,(z) [RM-]

strongly in the longer wavelengths (large
absorption coefficients). After photons pass Figure 2. KpAR(z) from model (Eq.2) compared
through the subsurface layer (say 3 meters), the with KpAR(z) from HydroLight (300 solar
absorption is happened in the shorter wavelengths, zenith angle), indicating that KpA(z) can be
where absorption coefficients are generally smaller, well described by Eq.2 with two parameters.
especially for oceanic waters.

For each vertical variation of KpAR(z), it is
found that this vertical change could be modeled as,

K2 (OP)To apply lOP distributions obtained from
KPAR (OP, z) = K, (IOP) + 05IOP) (2) satellite observation of water color, how K1,2 vary

( + z)0 with lOP needs to be known. For the KpA(z) data
Here K, is for the asymptotic value at greater with the Sun at 30' from zenith, it is found that K,
depths, with K2 more important to the subsurface and K2 could be well modeled with IOPs at one
KPAR value. lOP here represents different wavelength Zaneveld et al. [12] Barnard et al. [13]:
combinations of absorption and backscattering



absorption and backscattering coefficients at 490 and bb(490)) with data from HydroLight
nm, i.e., simulations. With the availability of a(490) and

K1 (lOP) = 2" + X" (a(490))0 5 + -2 bb (490), (3a) bb(490) images obtained from satellite remote
sensing, this KpA(z) model can be adequately

K2 (IOP) = €0+ fa(490)+ '2 bb(490)• (3b) incorporated into physical oceanography models to

"o.1,2 and '0,.,2 are model coefficients, study the effects of visible solar radiation on
Since KpA(z) also varies with solar altitude, surface heating [26]. Also, it provides easy and

we carried out HydroLight simulations with the reliable tool to predict the light level at desired
Sun at 100 and 60' from zenith in order to include depths, needed to plan the C14 incubation for in situ
solar zenith angle into the model. From these measurements of primary production [13].
simulations, we got
K1 (lop, 0a ) =

[E"o +X" (a(490)) 0 5 +X2bb( 4 9 0)](1 +a•0 sin(Oa))'

(4a) 
0

0.1

2(4b) )
[qo +qla(490)+q 2 bb(490)]((a, +a 2 cos(Oa)) A
Here 0a is the solar zenith angle above the surface. °"
Now we got a model that can describe the vertical 2
distribution of EpAR for different IOPs, depth, and
sun angle as

0.001 0.003 0.01 0.03 0.1 0.3

T(IOP, z, )= = e-PAR (lOP,z,O,)z . (5) T = EpA,(Z)1EpA(O')
EPAR(O-)

In this model, there are nine model coefficients:
0o,1,2, 'o,1,2, and %,1,2. To derive their values, T Figure 3. T(z) from model (Eq.5) compared with

values from Eq.5 were fit against T values from 7(z) from HydroLight for three sun angles.
HydroLight simulations with the model coefficients
derived by least-square curve fitting [4, 18]. Values
of derived o0,1,2, 6o,1,2, and ObJ.2 are provided in TABLE 1. MODEL COEFFICIENTS FOR Kp•(z)
Table 1. Figure 3 presents Eq.5 modeled parameters values

T(IOP,z,90 ) versus T(IOP,z,90O) determined from Xo; XI; X2 -0.057; 0.482 ; 4.221
HydroLight simulations. For those T values Co; q; 2 0.183; 0.702; -2.567
(limiting to the range of -0.001 to 0.8), bigger aOo; (XI; C 0.090; 1.465;-0.667
errors happened at T < 0.003, where the effects of
EPAR on heat transfer and photosynthesis in the
water column are small. For T> 0.003, the average ACKNOWLEDGEMENT
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